
Generic Dijkstra: correctness and tractability

Ireneusz Szcześniak
Department of Computer Science

Częstochowa University of Technology, Poland

Bożena Woźna-Szcześniak
Department of Mathematics and Computer Science

Jan Długosz University, Poland

NOMS 2023
Grant number 020/RID/2018/19 from the Polish Ministry of Education and Science



Introduction Contribution Conclusion Appendixes

Introduction

The current networking setting:
• Network densification: networks keep growing
• Agility: quicker, nimbler, leaner, cheaper
• Reliability: fast network control and management
• A crucial component: routing algorithms
• Back to basics: routing of a single connection

Yet: routing a single connection should be fast.

slide 1



Introduction Contribution Conclusion Appendixes

Motivation: optical networks

• Objective: route a single connection
• Why not the Dijkstra algorithm?
• Telecom networks use discrete resources.
• We need a path:

• of minimal cost,
• meeting some constraints.

• Spectrum constraints of optical networks:
• continuity,
• contiguity.

• Is routing of a single connection tractable?
• Observation: heuristics in common use

slide 2



Introduction Contribution Conclusion Appendixes

Network resources

• Resources modeled by an integral interval.
• Optical networks: a frequency slot unit.
• Given r1 = [0, 1), r2 = [1, 3), r3 = [0, 2):

• r3 ≺ r1 because r3 ⊃ r1
• r1 ‖ r2 because neither ⊂, ⊃, nor equality holds
• r1 ‖ r2 and r2 ‖ r3 does not imply r1 ‖ r3 because r1 ⊂ r3

• We have to account for incomparability and intransitivity.

slide 3



Introduction Contribution Conclusion Appendixes

Generic Dijkstra

• Published in 2019 without a proof of correctness.
• Simulations: paths were found efficiently and correctly.
• That suggests the problem is tractable.
• Skeptics: maybe the simulations were wrong?
• Qualms:

• Is the algorithm correct?
• Is the problem tractable?

slide 4



Introduction Contribution Conclusion Appendixes

Contribution

• Generalization of the Bellman equation
• Spotted a shortcoming, offered a correction
• Proof of correctness
• Proof of tractability

slide 5



Introduction Contribution Conclusion Appendixes

Bellman equation - 1952

• The dynamic programming principle
• Used by Dijkstra: the edge relaxation (label updating)
• Assumption: labels (cost) are of linear ordering.
• Objective: find a single minimal label for vertex i from s.

fs = 0
fi = min

e∈I(vi )
{fsource(e) ⊕ cost(e)} if i 6= s

• Goal: pick the best label.
• Result: a shortest-path tree
• Observation: rather a stipulation than a solution.

slide 6



Introduction Contribution Conclusion Appendixes

Generic Bellman equation
• We call it the generic dynamic programming principle.
• Used in generic Dijkstra
• Assumption: labels (cost and interval) are of partial ordering.
• Objective: find a set of incomparable labels for vertex i from s.

Ps = {(0,Ω)}

Pi = min{
⋃

e∈I(vi )

Psource(e) ⊕ e} if i 6= s

• Goal: drop worse labels.
• Result: an efficient-path tree
• Observation: again, rather an assumption than a solution.

slide 7



Introduction Contribution Conclusion Appendixes

A shortcoming of generic Dijkstra
• Found while proving correctness – shows the power of math.
• Two paths from s to t: wrong (e1), right (e2 + e3).
• We can get the wrong path even though this relation holds:

(1, [0, 2)) ≺ (1, [0, 1))
• Ordering labels by cost only is not enough.
• Ordering has to take intervals into account.

s

t

u

e1, (1, [0, 1))

e2, (1, [0, 2))

e3, (0, [0, 2))

slide 8



Introduction Contribution Conclusion Appendixes

A correction to the shortcoming: the < relation

We need two relations:
≺ for comparing labels: which label is better?
< for sorting labels: which label should be processed first?

We need < for:
• sorting that requires a linear ordering (cannot use ≺),
• proving to show that labels are derived in expected order.

slide 9



Introduction Contribution Conclusion Appendixes

The properties of the < relation for labels

Relation < should be implied by ≺:
• li ≺ lj =⇒ li < lj ,
• better labels should be processed first,
• in line with the greedy strategy.

Relation < (that was defined that way):
• establishes linear ordering (extends ≺),
• is transitive (labels derived in expected order).

Transitivity proven: < is lexicographic.

slide 10



Introduction Contribution Conclusion Appendixes

Label terminology

A label can be:
• permanent - part of the efficient-path tree,
• tentative - an edge away from a permanent label,
• candidate - a tentative label for consideration.

Definition (Label efficiency)
Label l is efficient if there does not exist label l ′ such that l ′ ≺ l .

Proposition
Relation l � l ′ holds for l ′ derived from l .

slide 11



Introduction Contribution Conclusion Appendixes

Intuition

Generic Dijkstra algorithm is correct for two reasons:
• the priority queue provides at the top an efficient label,
• derived labels cannot be better than a permanent label.

slide 12



Introduction Contribution Conclusion Appendixes

The proof
Theorem
The algorithm terminates with a complete set of efficient labels.

Proof.
We prove by induction. The induction step corresponds to an
iteration of the main loop. The induction hypotheses are:

1 P has efficient labels derived from efficient labels,
2 T has incomparable labels derived from efficient labels.

Basis. The hypotheses hold for the initial label.
Inductive step:

1 A popped label is efficient.
2 Maintained by relaxation using generic Bellman equations.

Termination. The queue eventually get empty.

slide 13



Introduction Contribution Conclusion Appendixes

Tractability
The complexity of the number of all labels produced, where Ω is
the number of units, V is the number of vertexes:

O(L) = O(|Ω|2|V |)

2 4 6 8
1

2

3

cost

un
its

Figure: The maximal set of incomparable labels for three units.

slide 14



Introduction Contribution Conclusion Appendixes

Conclusion

• For tractable problems we want algorithms that are:
• exact (correct),
• efficient.

• Proven: feel safe to use generic Dijkstra!
• Personal reflexion of a humble programmer:

• A simulator is a good start, but...
• Who wants to read the simulator code?
• Simulation results are hard to replicate.
• In a math proof we offer a detailed reasoning.

• Further work:
• Is the generic Dijkstra optimal? Can we do faster?
• Optimal overall network performance with exact routing?

slide 15



Introduction Contribution Conclusion Appendixes

Algorithm 1 Generic Dijkstra
In: graph G , source vertex s
Out: an efficient-path tree
Here we concentrate on permanent labels.

Ts = {(0,Ω)} // The initial label.
while T is not empty do

l = pop(T )
e = edge(l)
v = target(e)
// Add l to the set of permanent labels for vertex v .
Pv = Pv ∪ {l}
for all out edge e ′ of v in G do

relax(e ′, l)
return P

slide 16



Introduction Contribution Conclusion Appendixes

Algorithm 2 relax
In: edge e ′, label l
Here we concentrate on tentative labels.

c ′ = cost(l)⊕ cost(e ′)
v ′ = target(e ′)
for all RI I ′ 6= ∅ in RI(l) ∩ AU(e ′) do
l ′ = (c ′, I ′)
// Can the candidate label l ′ become tentative?
if @lv ′ ∈ Pv ′ : lv ′ � l ′ then

if @lv ′ ∈ Tv ′ : lv ′ � l ′ then
// Discard tentative labels lv ′ such that l ′ � lv ′ ,
// leave in Tv ′ only labels incomparable with l ′.
Tv ′ = Tv ′ − {lv ′ ∈ Tv ′ : l ′ � lv ′}
// Add l ′ to the set of tentative labels for vertex v ′.
Tv ′ = Tv ′ ∪ {l ′}

slide 17



Introduction Contribution Conclusion Appendixes

Table: Relations between RIs ri and rj .

max(ri ) < max(rj ) max(ri ) = max(rj ) max(ri ) > max(rj )
min(ri ) < min(rj ) ri ‖ rj ri < rj ri ⊃ rj ri < rj ri ⊃ rj ri < rj
min(ri ) = min(rj ) ri ⊂ rj ri > rj ri = rj ri ⊃ rj ri < rj
min(ri ) > min(rj ) ri ⊂ rj ri > rj ri ⊂ rj ri > rj ri ‖ rj ri > rj

Table: Relations between labels li and lj .

RI(li ) ⊂ RI(lj ) RI(li ) = RI(lj ) RI(li ) ⊃ RI(lj ) RI(li ) ‖ RI(lj )

cost(li ) < cost(lj ) li ‖ lj li < lj li ≺ lj li < lj li ≺ lj li < lj li ‖ lj li < lj

cost(li ) = cost(lj ) li � lj li > lj li = lj li ≺ lj li < lj li ‖ lj
li < lj if RI(li ) < RI(lj )
li > lj if RI(li ) > RI(lj )

cost(li ) > cost(lj ) li � lj li > lj li � lj li > lj li ‖ lj li > lj li ‖ lj li > lj

slide 18


	Introduction
	Introduction
	Motivation: optical networks
	Network resources
	Generic Dijkstra

	Contribution
	Contribution
	Bellman equation - 1952
	Generic Bellman equation
	A shortcoming of generic Dijkstra
	A correction to the shortcoming: the < relation
	The properties of the < relation for labels
	Label terminology
	Intuition
	The proof
	Tractability

	Conclusion
	Appendixes
	Generic Dijkstra
	Relaxation
	Relations


