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Introduction

The current networking setting:

Network densification: networks keep growing

Agility: quicker, nimbler, leaner, cheaper

Reliability: fast network control and management

A crucial component: routing algorithms

Back to basics: routing of a single connection

Yet: routing a single connection should be fast.
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Motivation: optical networks

Objective: route a single connection
Why not the Dijkstra algorithm?

Telecom networks use discrete resources.

We need a path:

® of minimal cost,
® meeting some constraints.

Spectrum constraints of optical networks:
® continuity,
® contiguity.

Is routing of a single connection tractable?

Observation: heuristics in common use
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Network resources

® Resources modeled by an integral interval.

Optical networks: a frequency slot unit.
Given p = [0,1), . =[1,3), 3 =[0,2):
® r3<r because 3D np

® r1 || r2 because neither C, D, nor equality holds
® ri || r2 and rp || r3 does not imply r || r3 because r; C r3

We have to account for incomparability and intransitivity.
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Generic Dijkstra

Published in 2019 without a proof of correctness.

Simulations: paths were found efficiently and correctly.

That suggests the problem is tractable.

Skeptics: maybe the simulations were wrong?

Qualms:
® |s the algorithm correct?
® |s the problem tractable?
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Contribution

e Generalization of the Bellman equation

® Spotted a shortcoming, offered a correction
® Proof of correctness

[ ]

Proof of tractability
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Bellman equation - 1952

® The dynamic programming principle
e Used by Dijkstra: the edge relaxation (label updating)
® Assumption: labels (cost) are of linear ordering.
® Objective: find a single minimal label for vertex i from s.
fs=0
fi = rr;m {fsource(e) © cost(e)} ifi#s
e€l(
® Goal: pick the best label.
® Result: a shortest-path tree
e Observation: rather a stipulation than a solution.
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Generic Bellman equation

e We call it the generic dynamic programming principle.
® Used in generic Dijkstra
¢ Assumption: labels (cost and interval) are of partial ordering.
e Objective: find a set of incomparable labels for vertex i from s.
Ps ={(0,)}
P; = min{ U Psource(e) D e} if i 7é S
€€|(V,')
® Goal: drop worse labels.
® Result: an efficient-path tree
® QObservation: again, rather an assumption than a solution.
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A shortcoming of generic Dijkstra
® Found while proving correctness — shows the power of math.
® Two paths from s to t: wrong (e;), right (ex + e3).
® We can get the wrong path even though this relation holds:
(1,[0,2)) < (1,[0,1))
® Ordering labels by cost only is not enough.
¢ Ordering has to take intervals into account.

jo

e1, (1,[0,1))

@< s, (0.[0,2)

e, (1,[0,2))

RO
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A correction to the shortcoming: the < relation

We need two relations:

=< for comparing labels: which label is better?

< for sorting labels: which label should be processed first?
We need < for:

® sorting that requires a linear ordering (cannot use <),

® proving to show that labels are derived in expected order.
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The properties of the < relation for labels

Relation < should be implied by <:
° i<l = i<,
e better labels should be processed first,
® in line with the greedy strategy.
Relation < (that was defined that way):
® establishes linear ordering (extends <),
® is transitive (labels derived in expected order).

Transitivity proven: < is lexicographic.
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Label terminology

A label can be:
® permanent - part of the efficient-path tree,
® tentative - an edge away from a permanent label,

e candidate - a tentative label for consideration.

Definition (Label efficiency)
Label / is efficient if there does not exist label /’ such that I/ < /.

Proposition
Relation | < I' holds for I' derived from I.
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[ntuition

Generic Dijkstra algorithm is correct for two reasons:
® the priority queue provides at the top an efficient label,

® derived labels cannot be better than a permanent label.
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The proof

Theorem
The algorithm terminates with a complete set of efficient labels.

Proof.
We prove by induction. The induction step corresponds to an
iteration of the main loop. The induction hypotheses are:

@ P has efficient labels derived from efficient labels,

® T has incomparable labels derived from efficient labels.
Basis. The hypotheses hold for the initial label.
Inductive step:

@ A popped label is efficient.

® Maintained by relaxation using generic Bellman equations.

Termination. The queue eventually get empty.
L]
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Tractability

The complexity of the number of all labels produced, where Q is
the number of units, V is the number of vertexes:

o(L) = o(|Q*| V1)

3+ ° (=
(2]
E 2+ ° : I ®
jm}
1o | ‘ ‘ L=
2 4 6 8
cost

Figure: The maximal set of incomparable labels for three units.
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Conclusion

For tractable problems we want algorithms that are:

® exact (correct),
e efficient.

Proven: feel safe to use generic Dijkstral

Personal reflexion of a humble programmer:
® A simulator is a good start, but...
® Who wants to read the simulator code?
® Simulation results are hard to replicate.
® In a math proof we offer a detailed reasoning.

Further work:

® |s the generic Dijkstra optimal? Can we do faster?
® Optimal overall network performance with exact routing?
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Algorithm 1 Generic Dijkstra

In: graph G, source vertex s

Out: an efficient-path tree

Here we concentrate on permanent labels.

Ts ={(0,Q)} // The initial label.
while T is not empty do
I'= pop(T)
e = edge(/)
v = target(e)
// Add [ to the set of permanent labels for vertex v.
P, =P, U{l}
for all out edge €’ of v in G do
relax(e’, /)
return P
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Algorithm 2 relax
In: edge €', label /
Here we concentrate on tentative labels.
¢’ = cost(/) @ cost(e’)
v/ = target(€’)
for all Rl I’ # 0 in RI(/) N AU(€") do
I"=(c, 1)
// Can the candidate label /' become tentative?
if ﬂ/vl € P, : 1, =/ then
if 8l, € T, : I, < I' then
// Discard tentative labels /,» such that /" < /,/,
// leave in T,/ only labels incomparable with /.
T, =T, — {/\,/ e T, : I = /v’}
// Add I to the set of tentative labels for vertex v'.
T, =T,U {/I}
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Table: Relations between Rls r; and r;.
max(r;) < max(r;) | max(r;) = max(r;) | max(r;) > max(r;)
min(r;) < min(r;) o | <y rDr r <t
min(r;) =min(r) | n Cr ri>r ri=r riDr ri <rj
min(r) > min(n) | C | nsn | ncn | s (Naln s
Table: Relations between labels /; and J;.
RI) € R, RI0) = RI7) R S R0 ] RI() TR
cost(h) <cost(f) [l [ h<h [ i< [ <l | iz hi<f i <T;
cost(l;) = cost(/;) li =1 i > 1 li=1 i <1 i <l
cost(l) Scost(l) | =0 | F>h | h=G | hi>h | kG | >l | kIl >
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