Generic Dijkstra: correctness and tractability

Ireneusz Szcześniak Department of Computer Science Częstochowa University of Technology, Poland

Bożena Woźna-Szcześniak Department of Mathematics and Computer Science Jan Długosz University, Poland

NOMS 2023

Grant number 020/RID/2018/19 from the Polish Ministry of Education and Science

Introduction ●○○○	Contribution	Conclusion O	Appendixes

Introduction

The current networking setting:

- Network densification: networks keep growing
- Agility: quicker, nimbler, leaner, cheaper
- Reliability: fast network control and management
- A crucial component: routing algorithms
- Back to basics: routing of a single connection

Yet: routing a single connection should be fast.

Motivation: optical networks

- Objective: route a single connection
- Why not the Dijkstra algorithm?
- Telecom networks use discrete resources.
- We need a path:
 - of minimal cost,
 - meeting some constraints.
- Spectrum constraints of optical networks:
 - continuity,
 - contiguity.
- Is routing of a single connection tractable?
- Observation: heuristics in common use

Network resources

- Resources modeled by an integral interval.
- Optical networks: a frequency slot unit.
- Given $r_1 = [0, 1)$, $r_2 = [1, 3)$, $r_3 = [0, 2)$:
 - $r_3 \prec r_1$ because $r_3 \supset r_1$
 - $r_1 \parallel r_2$ because neither \subset , \supset , nor equality holds
 - $r_1 \parallel r_2$ and $r_2 \parallel r_3$ does not imply $r_1 \parallel r_3$ because $r_1 \subset r_3$
- We have to account for incomparability and intransitivity.

Generic Dijkstra

- Published in 2019 without a proof of correctness.
- Simulations: paths were found efficiently and correctly.
- That suggests the problem is tractable.
- Skeptics: maybe the simulations were wrong?
- Qualms:
 - Is the algorithm correct?
 - Is the problem tractable?

Contribution

- Generalization of the Bellman equation
- Spotted a shortcoming, offered a correction
- Proof of correctness
- Proof of tractability

Bellman equation - 1952

- The dynamic programming principle
- Used by Dijkstra: the edge relaxation (label updating)
- Assumption: labels (cost) are of linear ordering.
- Objective: find a single minimal label for vertex *i* from *s*.

$$f_{s} = 0$$

$$f_{i} = \min_{e \in I(v_{i})} \{ f_{source(e)} \oplus cost(e) \} \qquad \text{if } i \neq s$$

- Goal: pick the best label.
- Result: a shortest-path tree
- Observation: rather a stipulation than a solution.

Introduction	Contribution	Conclusion	Appendixes
0000	00000000	0	000

Generic Bellman equation

- We call it the generic dynamic programming principle.
- Used in generic Dijkstra
- Assumption: labels (cost and interval) are of partial ordering.
- Objective: find a set of incomparable labels for vertex *i* from *s*.

$$P_{s} = \{(0, \Omega)\}$$
$$P_{i} = \min\{\bigcup_{e \in I(v_{i})} P_{source(e)} \oplus e\} \quad \text{if } i \neq s$$

- Goal: drop worse labels.
- Result: an efficient-path tree
- Observation: again, rather an assumption than a solution.

Introduction	Contribution	Conclusion	Appendixes
0000	00000000	0	000

A shortcoming of generic Dijkstra

- Found while proving correctness shows the power of math.
- Two paths from s to t: wrong (e_1) , right $(e_2 + e_3)$.
- We can get the wrong path even though this relation holds: $(1, [0, 2)) \prec (1, [0, 1))$
- Ordering labels by cost only is not enough.
- Ordering has to take intervals into account.

A correction to the shortcoming: the < relation

We need two relations:

- \prec for comparing labels: which label is better?
- $\,<\,$ for sorting labels: which label should be processed first? We need $\,<\,$ for:
 - sorting that requires a linear ordering (cannot use \prec),
 - proving to show that labels are derived in expected order.

The properties of the < relation for labels

Relation < should be implied by \prec :

• $I_i \prec I_j \implies I_i < I_j$,

• better labels should be processed first,

• in line with the greedy strategy.

Relation < (that was defined that way):

- establishes linear ordering (extends ≺),
- is transitive (labels derived in expected order).

Transitivity proven: < is lexicographic.

Label terminology

A label can be:

- permanent part of the efficient-path tree,
- tentative an edge away from a permanent label,
- candidate a tentative label for consideration.

Definition (Label efficiency)

Label / is efficient if there does not exist label I' such that $I' \prec I$.

Proposition

Relation $I \leq I'$ holds for I' derived from I.

Introduction	Contribution	Conclusion	Appendixes
0000	00000000000	0	000

Intuition

Generic Dijkstra algorithm is correct for two reasons:

- the priority queue provides at the top an efficient label,
- derived labels cannot be better than a permanent label.

Introduction	Contribution	Conclusion	Appendixes
0000	0000000000	0	000

The proof

Theorem

The algorithm terminates with a complete set of efficient labels.

Proof.

We prove by induction. The induction step corresponds to an iteration of the main loop. The induction hypotheses are:

1 P has efficient labels derived from efficient labels,

 \bigcirc T has incomparable labels derived from efficient labels.

Basis. The hypotheses hold for the initial label. **Inductive step:**

- 1 A popped label is efficient.
- 2 Maintained by relaxation using generic Bellman equations.

Termination. The queue eventually get empty.

Introduction	Contribution	Conclusion	Appendixes
0000	00000000	0	000

Tractability

The complexity of the number of all labels produced, where Ω is the number of units, V is the number of vertexes:

 $O(L) = O(|\Omega|^2 |V|)$

Figure: The maximal set of incomparable labels for three units.

Introduction	Contribution	Conclusion	Appendixes	
0000	000000000	•	000	

Conclusion

- For tractable problems we want algorithms that are:
 - exact (correct),
 - efficient.
- Proven: feel safe to use generic Dijkstra!
- Personal reflexion of a humble programmer:
 - A simulator is a good start, but...
 - Who wants to read the simulator code?
 - Simulation results are hard to replicate.
 - In a math proof we offer a detailed reasoning.
- Further work:
 - Is the generic Dijkstra optimal? Can we do faster?
 - Optimal overall network performance with exact routing?

Introduction 0000	Contribution	Conclusion O	Appendixes ●○○
Algorithm	${f 1}$ Generic Dijkstra		
In: graph G	, source vertex <i>s</i>		
Out: an effi	cient-path tree		
Here we cor	ncentrate on permanent	labels.	

$$T_{s} = \{(0, \Omega)\} // \text{ The initial label.}$$

while T is not empty do

$$I = \text{pop}(T)$$

$$e = \text{edge}(I)$$

$$v = \text{target}(e)$$

$$// \text{ Add } I \text{ to the set of permanent labels for vertex } v.$$

$$P_{v} = P_{v} \cup \{I\}$$

for all out edge e' of v in G do

$$\text{relax}(e', I)$$

return P

Introduction 0000	Contribution	Conclusion O	Appendixes ○●○
Algorithm	2 relax		
In: edge <i>e'</i>	, label <i>I</i>		
<u>Here we co</u>	ncentrate on tentative la	abels.	
$c' = \cos t$	$t(\mathit{I}) \oplus cost(\mathit{e}')$		
$v' = tar_{i}$	get(e')		
for all R	$I I' \neq \emptyset$ in $RI(I) \cap AU(e)$	′) do	
l' = (d	c', I')		
// Ca	n the candidate label I' l	pecome tentative?	
if ∄/ _{v′}	$\in P_{v'}: I_{v'} \preceq I'$ then		
if ∄	$I_{v'} \in T_{v'} : I_{v'} \preceq I'$ then		
/	/ Discard tentative label	s $I_{v'}$ such that $I' \preceq I_{v'}$,
/	/ leave in $\mathcal{T}_{v'}$ only labels	s incomparable with $I^\prime.$	
Г	$T_{v'} = T_{v'} - \{I_{v'} \in T_{v'} : I_{v'} \in T_{v'} \}$	$I' \preceq I_{v'}$	
/	/ Add /' to the set of te	ntative labels for verte	x v'.
7	$\overline{v'} = T_{v'} \cup \{l'\}$		

Introduction	Contribution	Conclusion o	Appendixes ○○●

Table: Relations between RIs r_i and r_j .

	$\max(r_i) < \max(r_j)$		$\max(r_i) = \max(r_j)$		$\max(r_i) > \max(r_j)$	
$\min(r_i) < \min(r_j)$	$r_i \parallel r_j$	$r_i < r_j$	$r_i \supset r_j$	$r_i < r_j$	$r_i \supset r_j$	$r_i < r_j$
$\min(r_i) = \min(r_j)$	$r_i \subset r_j$	$r_i > r_j$	ri	$= r_j$	$r_i \supset r_j$	$r_i < r_j$
$\min(r_i) > \min(r_j)$	$r_i \subset r_j$	$r_i > r_j$	$r_i \subset r_j$	$r_i > r_j$	$r_i \parallel r_j$	$r_i > r_j$

Table: Relations between labels I_i and I_j .

	$RI(I_i)$	_ RI(<i>l_j</i>)	$RI(I_i) =$	$= RI(l_j)$	$RI(I_i)$	$\supset RI(l_j)$		$RI(l_i) \parallel RI(l_j)$
$cost(I_i) < cost(I_j)$	$I_i \parallel I_j$	$I_i < I_j$	$I_i \prec I_j$	$I_i < I_j$	$I_i \prec I_j$	$I_i < I_j$	$I_i \parallel I_j$	$I_i < I_j$
$cost(I_i) = cost(I_j)$	$l_i \succ l_j$	$l_i > l_j$	l _i =	$= I_j$	$I_i \prec I_j$	$I_i < I_j$	$I_i \parallel I_j$	$l_i < l_j \text{ if } RI(l_i) < RI(l_j) \\ l_i > l_j \text{ if } RI(l_i) > RI(l_j)$
$cost(l_i) > cost(l_j)$	$I_i \succ I_j$	$I_i > I_j$	$l_i \succ l_j$	$I_i > I_j$	$I_i \parallel I_j$	$I_i > I_j$	$l_i \parallel l_j$	$l_i > l_j$