
Packet Loss Analysis in Optical Packet-Switched Networks with

Limited Deflection Routing

Ireneusz Szcześniak
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Abstract

We present an approximate analytical method for the evaluation of packet loss probability in syn-
chronous optical packet-switched networks which operate under limited deflection routing with the con-
tention resolution method based on priorities. Packets are lost because they are removed by nodes. They
are removed because they experience too many deflections and stay prohibitively long in the network.
Such packets have to be removed because they will be ignored by the transmission protocols (like TCP)
and because the quality of their optical signal is unacceptable. Presented are results for the network in
the topology of the torus of the two-dimensional grid, which operates at a steady state with the uniform
load u, u ∈ 〈0, 1〉. The strength of our analysis is its novel mathematical appraoch, which is capable
of providing very low packet loss probabilities. For the network composed of 100 nodes, we predict the
packet loss probability as low as 10−9 or lower, while simulation provided results only at the order of
10−6. For a given permissible packet loss probability our analysis provides the maximal network load
and the number of allowed deflections. We verify the analysis with simulation in the cases for which
simulation gave results.

Keywords: optical packet switching, deflection routing, performance evaluation
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Figure 1: General architecture of an optical packet-switched network.

1 Introduction

The communication networks currently in operation exploit only a small fraction of the bandwidth available
in optical fibers, because of their slow electronic components [1]. The already available technology for
transparent optical packet switching (OPS) is faster [2], but several years must elapse before OPS networks
start being deployed. Aside from the fact this technology still has not left laboratories, networks based on
OPS are yet to be designed. New solutions (e.g.. routing strategies, congestion control mechanisms) must
be invented and evaluated. Our work contributes to the evaluation of the packet loss probability (PLP) in
limited deflection routing.

Several projects aimed at an OPS network, most notably [3, 4, 5]. A generic network architecture is
shown in Fig. 1. A number of electronic client networks are connected to an electronic edge node. At an edge
node arriving packets (mostly IP packets [6]) are aggregated and encapsulated in optical packets for more
efficient utilization of the core network and for mitigation of adverse self-similarity [7, 8]. Then the packets’
payload is converted from the electronic into optical domain and injected into the optical core. The packets
hop between core nodes with the payload remaining optical to finally arrive at the destination edge node.
At the destination edge node the payload is converted back to the electronic domain and delivered to the
destination electronic client network.

Deflection routing is an attractive routing strategy for OPS networks [9], because it does not have to
rely on optical buffering of packets. Nowadays optical buffering is implemented solely with optical delay
lines (ODL), which are bulky and expensive and hence should be avoided whenever possible. However, with
deflection routing a packet can live in the network for a long time before it eventually arrives at its destination
due to a large number of deflections it can experience [10].

In limited deflection routing the number of packet’s deflections (recorded in the packet header) is limited
to the number S, called the threshold. A packet is removed from the network and lost when it experiences
the Sth deflection. There are two reasons to employ limited deflection routing. First, packets that travel too
long in the network can be removed because they anyway will be ignored by real-time applications (like video
conference applications) or considered lost by the TCP protocol (data transfer) and retransmitted. Second,
the optical signal quality of long traveling packets is unacceptable because of noise from optical amplifiers
though which the packet has traveled.

Limited deflection routing suffers from packet loss. For a given network topology there are two parameters
that influence packet loss: the threshold S, S = 1, 2, . . . , and the network load u, u ∈ 〈0, 1〉. The parameter
u expresses the probability that a packet arrives along any link at any time slot.

The objective of our work is to find the values of u and S for which some given level of the PLP is not
exceeded. The ROM project [4] aimed at the PLP on the order of 10−9 for their “Premium” quality service.
We provide the values of S and u such that the “Premium” service is of the requested quality. We had to
obtain our results with mathematical analysis, since the sought PLP is very low, and software simulators are
unable to provide results of desired precision within a reasonable time limit.
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Figure 2: The torus of the two-dimensional grid with 16 nodes.
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Figure 3: The network node of the 4 × 4 type.

As to previous works, in [11] unlimited deflection routing is examined with Markov chains. In [12]
deflection routing is loopless, and for this reason the analysis there does not consider circulating packets.
A detailed combinatorial analysis of packet deflection at a node is conducted in [13], but there the packet
loss is caused by buffer overflows, not by limited deflection routing. Analysis of limited deflection routing in
networks based on 2×2 nodes is presented in [14], which is an adapted analysis of unlimited deflection routing
published in [15]. In [16] packet loss analysis is presented for asynchronous OPS networks with unlimited
deflection routing. Regular networks built of 2 × 2 nodes running unlimited deflection routing are analyzed
in [17].

2 Network Model

The network works synchronously, i.e. time is the same for every node and is divided into time slots. The
network is homogeneous, i.e. every node functions both as a core node and an edge node. The node functions
as an edge node for packets for which this node is not the destination. It functions as an edge node when it
admits packets from the local source and drops packets to the local sink. At every node packets arrive from
the source according to the Poisson process and ask for admission into the the network. They are admitted
whenever there is an available slot in one of the output fibers. The destination of the packet asking for
admission is uniformly distributed among every node in the network except the admitting node.

Nodes are connected with fibers that carry one wavelength only forming a network in the topology of
the torus of the two-dimensional grid. The torus has l rows and l columns, and has N = l2 nodes. A
sample network with N = 16 nodes is shown in Fig. 2. This topology is regular or, using the graph theory
nomenclature, node symmetric.

Each node is of the 4 × 4 type, i.e. each has four input and four output fibers. In this node a packet is
lost only when its number of deflections has reached S. Contention resolution is based on priorities. More
important packets are routed first, while the contention among equally important packets is resolved at
random. We try to send a packet along one of its preferred outputs, which we chose at random.

There are four classes of packets: 1st, 2nd, 3rd, and 4th. The 1stclass packets are the most important,
while the 4thclass packets are the least important. A packet is assigned a single class depending only on
the number of preferred outputs it has. The preferred output is the one that follows a shortest path to the
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packet’s destination. A packet’s preferred output is also referred to as a packet’s preference. For instance,
let us suppose a packet residing at node 11 (Fig. 2) is destined to node 1. At node 11 the packet is of the
4thclass with respect to node 1, because each of the four links at node 11 offers a shortest path to node 1.
When the same packet arrives later at node 10, it is of the 3rdclass with respect to node 1. A packet during
its lifetime can be of various classes. The notion of packet class has been taken from [13]. In [11] it is referred
to as the packet type.

We assume that traffic on all links in the whole network is statistically equivalent, and that the traffic at
all nodes is statistically equivalent. One packet arrives along one link per one time slot.

We note that our model can be implemented with the KEOPS components [2], which are synchronous
as opposed to the asynchronous components also being researched. In our work we chose the synchronous
approach, because it receives more attention from the research community [18], and because it achieves
lower contention probability in comparison with the asynchronous approach [3, 19]. Moreover, the KEOPS
technology is presently the most mature [3].

Packets are of a fixed duration in time with the time slot of t = 1.64µs. Each link in our model is 200km
long. The speed of light in fiber is roughly 2 · 108 m/s and therefore one time slot corresponds to 329.2m of
fiber, while 608 time slots correspond to 200km of fiber, which is the length of a single link in our model.

3 Evaluation of a stand-alone 4 × 4 node

In this section we evaluate the network node when it functions as a 4 × 4 core node, where a packet is only
switched, not added or dropped. We do not evaluate the workings of the 8×8 optical packet switch, but only
the logical function of the 4 × 4 core node. The evaluation considers a separate node, without any reference
to the network. We only assume that the traffic offered to every input link is statistically identical, and that
when a packet requests an output link, then every output link is requested with an equal probability, i.e. on
the average no output link is favored.

In order to evaluate the packet loss in the whole network we need to evaluate how vulnerable to deflection
a packet is at a stand-alone 4×4 node. At a node a packet is of one of the four classes, and we must calculate
the deflection probability for each class. The probability of deflecting a packet of class i is denoted by di,
i = 1, 2, 3, 4, and all the deflection probabilities together as an array D = 〈d1, d2, d3, d4〉. In this article an
array is a one-dimensional array commonly used in programming. These values di we plug into the transition
matrix T .

The calculation of deflection probabilities di for a 4× 4 node is intricate, because there are many possible
situations in which packets arrive and in which they are routed. Some ideas for this tedious combinatorial
computation were taken from [13]. We employ the brute force approach: we consider every situation that may
take place at a node, and calculate its corresponding deflection probabilities. Then we calculate deflection
probabilities di based on the deflection probabilities for every separate situation.

The parameters for the evaluation are the network load u and the distribution of packet classes given by
the array V of probabilities vi, V = 〈v1, v2, v3, v4〉. The probability in which a packet is of class i is given
by vi, provided that the packet arrived (conditional probability). Therefore the probability of getting a 1st

class packet at any input link at any time slot is uv1. The array V is computed in the next section.
At a node, along each of the four incoming links a packet can arrive with probability u, so at a node there

can arrive from 0 to 4 packets. The probability with which k packets arrive along n = 4 links is given by the
binomial distribution:

Pu(k|n)









n=4

=

(

4

k

)

uk(1 − u)4−k. (1)

Each of the k packets is of one of the n = 4 different classes, and therefore we not only obtain k packets,
but a multiset of packet classes. A multiset is a set where the order of the elements does not matter, but the
number of repeated elements does. For instance, three packets, k = 3, can form combination {1st, 1st, 2nd},
i.e. two packets are of the 1st class and one of the 2nd. From now on we refer to a combination of packet
classes by a class combination.

In combinatorics this way of choosing packet classes is called combinations with repetitions (or multi-
choosing) of k elements from the set of n = 4 elements. The number of multisets of k elements on n = 4
packet classes is:
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Table 1: Number of class combinations and preference arrangements at a 4 × 4 node.
number of packets

1 2 3 4 TOTAL

number of class
combinations

4 10 20 35 69

number of preference
arrangements

15 147 1195 8763 10120

Table 2: All preference combinations for a 4 × 4 node.
number of preference
preferences combinations

1 〈1〉, 〈2〉, 〈3〉, 〈4〉

2
〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 2〉,
〈2, 3〉, 〈2, 4〉, 〈3, 3〉, 〈3, 4〉, 〈4, 4〉

3 〈1, 2, 3〉, 〈1, 2, 4〉, 〈1, 3, 4〉, 〈2, 3, 4〉
4 〈1, 2, 3, 4〉

C
k

n = Ck
n+k−1 =

(

n + k − 1

k

)







n=4

=

(

k + 3

k

)

. (2)

For instance, there are 10 class combinations of two packets, C
2

4 = C2
5 = 10: {1st, 1st}, {1st, 2nd}, {1st,

3rd}, {1st, 4th}, {2nd, 2nd}, {2nd, 3rd}, {2nd, 4th}, {3rd, 3rd}, {3rd, 4th}, and {4th, 4th}. Table 1 lists the
number of class combinations for k = 1, 2, 3, 4.

A class combination is characterized by an array K, K = 〈k1, k2, k3, k4〉, where ki is the number of packets
of class i. Therefore K = 〈2, 1, 0, 0〉 characterizes class combination X = 〈1, 1, 2〉. The number k of packets
equals:

k =

4
∑

i=1

ki. (3)

The order of packets in a multiset is unimportant, and so multisets {1st, 1st, 2nd}, {1st, 2nd, 1st} represent
the same class combination. In order to uniquely refer to a class combination we introduce the array represen-
tation of class combinations. An array X = 〈x1, . . . , xk〉 represents a class combination of k elements, where
xi can be 1, 2, 3 or 4 to denote the packet class. The array is sorted in nondecreasing order, i.e. xi ≤ xi+1.
For example, class combination {1st, 2nd, 1st} is represented by X = 〈1, 1, 2〉.

A class combination is more likely to take place proportionally to the number of ways in which it can be
permuted with repetitions, which equals k!/

∑4

i=1
ki!.

Therefore, given array V and provided that k packets arrived, the probability with which a class combi-
nation characterized by array K arrives is equaled to:

pcmb(K,V ) =
k!

∑4

i=1
ki!

4
∏

i=1

vki

i (4)

Class combination X can refer to packets with various preferences. We number arbitrarily from 1 to 4
the output links of the 4 × 4 node. A packet’s preferences are grouped into an array of integers sorted in
nondecreasing order. For instance, 〈1, 4〉 represents the packet with preferred outputs 1 and 4. Table 2 lists
four groups of preference combinations. Preference combinations within one group are equally likely as no
output is favored as a preference. The number of preference combinations with k preferences is:

Ck
4 =

(

4

k

)

. (5)
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Algorithm 1 given u and V , calculate D

D = 〈d1, d2, d3, d4〉 ⇐ 〈0, 0, 0, 0〉
C = 〈c1, c2, c3, c4〉 ⇐ 〈0, 0, 0, 0〉
for k ⇐ 1 to 4 do

pber ⇐ Pu(k|4)
for each combination X = 〈x1, . . . , xk〉 do

pcmb ⇐ pber · pcmb(K,V )
for each arrangement Y of combination X do

parr ⇐ pcmb · parr(K)
A = 〈a1, . . . , ak〉 ⇐ def(Y )
for i ⇐ 1 to k do

cxi
⇐ cxi

+ parr

dxi
⇐ dxi

+ parr · ai

end for

end for

end for

end for

for i ⇐ 1 to 4 do

dxi
⇐ dxi

/cxi

end for

return D

When we replace every packet class xi in a class combination X with an array of packet preferences yk, then
we get preference arrangements denoted by Y = 〈y1, . . . , yk〉. There may be many preference arrangements
for a single class combination. For example, class combination X = 〈1, 1, 2〉 refers to preference arrangements
Y = 〈〈1〉, 〈3〉, 〈2, 4〉〉 and Y = 〈〈2〉, 〈2〉, 〈1, 2〉〉 among many others.

The number of preference arrangements for a class combination described by array K is:

4
∏

i=1

(Ci
4)

ki . (6)

Since no output is favored, every preference arrangement is equally likely, and therefore the probability
of getting a specific preference arrangement for a class combination characterized by K is:

parr(K) =
1

∏4

i=1
(Ci

4)
ki

. (7)

Up to this point in this section we presented the elementary combinatorial expressions utilized in the
evaluation of a 4 × 4 node. We derived the probability pcmb(K,V ) with which a specific combination takes
place and the probability parr(K) with which an arrangement occurs.

It remains to calculate the deflection probabilities for arrangement Y . We need a function def(Y ) which
takes arrangement Y as an argument and returns array A = 〈a1, . . . , ak〉, where ai is the probability of
deflecting packet yi. The function iterates over every routing scenario (i.e. assignments of outputs to which
each packet should be sent) and calculates average deflection probabilities. The detailed description of this
function is beyond the page limit of this article. Please consult [20] for more details.

Finally, based on the results of this section we present Algorithm 1. The algorithm iterates over every
combination and every arrangement, and computes corresponding deflection probabilities. Each arrangement
contributes to the sought deflection probabilities with a specific weight.

Table 3 presents sample analysis and simulation results for a stand-alone 4× 4 node. The analytical four
values have been computer by Algorithm 1, while the simulation values by a simulation of the node for 106

time slots. We can see that the analysis and simulation results for the four classes match very closely. Note
that packets of the 4thclass are never deflected, as they prefer every output.
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Table 3: Simulation and analysis results for a separate 4 × 4 node with u = 0.1 and V = 〈0.4, 0.2, 0.1, 0.3〉.
1st class 2nd class 3rd class 4th class

analysis 0.007755 0.001044 0.000062 0.000000
simulation 0.007753 0.001110 0.000089 0.000000

4 Analysis

The goal of the analysis is to obtain the probability distribution of packet loss as a function of the number
of hops. The parameters of the analysis are the threshold S, the load u, and the number of nodes in the
network. The analysis is based on the method presented in [14], and concentrates on the tagged packet.

In the previous section the variables k and n had their frequent combinatorial meaning, i.e. k denoted the
number of chosen elements and n the number of elements to choose from. However, in this section k denotes
the number of a time slot, and n the number of a node. Later in this section the symbol K is ascribed a
different meaning to its previous one.

We trace the tagged packet from the time slot it enters the network (k = 0), through consecutive time
slots (k = 1, 2, . . . ) up to the time slot when the packet cannot make more hops (k = K). The tagged packet
makes one hop at a time slot. The value K is the upper bound on the number of hops a packet can make
[14]:

K = S · (network’s diameter). (8)

Since the network is regular and the traffic is uniform, the tagged packet is traced during its journey to
node 1 instead of to every node. In a regular network every node is equivalent to every other node, which
together with the assumption of traffic uniformity allows the analysis to be carried out for one node only
(e.g. node 1) as the destination.

In the analysis we operate on the probabilities that the tagged packet is present at node n, n = 1, . . . , N ,
after it made k, k = 1, . . . ,K, hops. For instance, we might be interested in the probability that the tagged
packet resides at node i = 5 after it made k = 3 hops. We also need to know the probabilities which
correspond to the number s, s = 0, . . . , S − 1, of deflections which the packets experiences during its travel.
For example, we might need to know the probability that the tagged packet resides at node n = 5 after it
made k = 3 hops and that it has experienced s = 2 deflections on the way. We express these probabilities of
the packet presence by a polynomial pk,n(x) of the degree at most S − 1:

pk,n(x) =

S−1
∑

s=0

pk,n,sx
s, (9)

where the coefficient pk,n,s expresses the probability that the tagged packet resides at node n after it
made k hops and experienced s deflections.

From the mathematical viewpoint, polynomials pk,n(x) belong to the ring of polynomials modulo xS over
the field R of real numbers. This is formally expressed in the following way:

pk,n(x) ∈ R[x]/xS (10)

We do not need, however, to think in the terms of abstract algebra. In this article a polynomial pk,n(x) is
a tool to remember the numbers of deflections a packet has experienced and their corresponding probabilities.
If we only seek the probability that the tagged packet resides at node n after k hops, we obtain it by summing
the coefficients of the polynomial pk,n(x), which is the same as the evaluation of the polynomial at point
x = 1: pk,n(x = 1). Using values for x other than one has no purpose. We do not have to treat x as a
variable, since it is only an object on which we perform algebraic manipulations. This polynomial approach
does not have anything in common with the polynomial approximation.

We group the polynomials into vectors Pk = (pk,n(x)) of N elements, where element n, pk,n(x), relates
to node n in the network:

Pk = (pk,1(x), . . . , pk,n(x), . . . , pk,N (x))
T

. (11)
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(14)

Vector Pk provides the complete information about the tagged packet presence after it made k hops.
Vector P0 provides the probabilities of packet presence at the moment it is admitted to the network. The
packet is destined to node 1, and starts its journey from every other node with an equal probability 1/(N−1):

P0 = (0, 1/(N − 1), . . . , 1/(N − 1))
T

. (12)

To obtain vectors Pk we employ the following equation:

Pk = TPk−1, k = 1, . . . ,K (13)

where T is the transition matrix that describes the transitions the tagged packet can make when making
one hop. The elements ti,j(x) of the matrix are also polynomials. The element t′i,j(x) expresses the probability
of the tagged packet transition from node j to node i, provided that the tagged packet resides at node j.

The elements of the transition matrix are deduced as follows. If a link between nodes j and i does not
exist, then the tagged packet cannot make a transition, and for that reason ti,j(x) = 0. The transition of a
class i packet with deflection is represented by ti,j(x) = 1

4−i
dix, while the transition along a preferred link

is represented by ti,j(x) = 1

i
pi, where pi = 1− di. These rules do not apply to node 1, the destination node,

where the tagged packet is absorbed, and so ti,1(x) = 0. The transition matrix for the network in Fig. 2 is
given in (14), where node 1 is the destination of the tagged packet.

The probabilities of packet loss are derived from vectors Pk. The probability with which the tagged packet
is lost after it makes k hops is derived only from vector Pk, and equals:

N
∑

n=1

pk,n,S−1 · dcn
, (15)

where cn is the class of the tagged packet at node n.
In the previous section the array V = 〈v1, v2, v3, v4〉 was introduced. Its elements are calculated as follows:

vi =

∑K−1

k=0

∑N

n=2
pk,n(x = 1)δicn

∑K−1

k=0

∑N

n=2
pk,n(x = 1)

, i = 1, 2, 3, 4, (16)

where δicn
is the Kronecker delta for i and cn.

The values of vi are needed to calculate the values of di. The values of di are put into the transition
matrix T . Having the transition matrix T, we compute the vectors Pk. Finally, having the vectors Pk, we
compute the new values of vi. Thus the values of vi for the transition matrix are obtained by successive
approximations.

The initial guess for the values of vi is the ratio of the number of nodes at which the tagged packet is
of class i to the number of all nodes. For the next approximated value of vi the values of di is calculated
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as described in Section 3, a new matrix T is generated, then vectors Pk are computed using (12), (13), and
finally new and refined values of vi are obtained from (16).

The process is repeated the necessary number of times until the desired precision of di is reached. In
our calculations a very high precision was attained after a few iterations, where the successive values of di

converged smoothly and fast.

5 Results

We present analysis and simulation results obtained with the OPUS software package [20]. The OPUS
simulator has been implemented in OMNeT++ [21]. Figures 4 and 5 present the results of the analysis and
simulation for the network with 100 nodes. The simulation results are represented by crosses, whereas the
analysis results by lines.

There are two groups of simulation and analysis results. In the first group the threshold S was fixed at
S = 10, while the load u varied, u = 0.1, 0.47, 1.0. The results are shown in Fig. 4. The load u influences only
the PLP, not the number of hops at which packets are lost. We note that the results of packet loss presented
in Fig. 4 for u = 0.1 are impractical, since they are very low (10−26) and neither experiments nor simulation
could corroborate our findings.

In the other group the load u was fixed at u = 0.47, while the threshold S varied, S = 5, 10, 15. The
results are shown in Fig. 5. For different values of the threshold S packets are lost at different numbers of
hops. As we increase the value of S, packets are lost later, they are more likely to be delivered to their
destinations, and as the result the PLP is smaller.

Fig. 6 presents the aggregated PLPs (an aggregated PLP is obtained by adding together the PLPs for all
possible numbers of hops) obtained with the analysis for the network of 100 nodes, where the threshold S
and load u vary: S = 1, 2, . . . , 10, u = 0.1, 0.2, . . . , 1.0. In total there are 100 values of aggregated PLP that
compose the curved grid: one value per a grid point. The figure also shows a plane of the allowed PLP at
the value of 10−9. Only a small part of the PLP surface is below the plane. For instance, the load u = 0.1
yields the PLP below 10−9 provided that S = 7, 8, 9, 10.

6 Conclusion

We analyzed the packet loss probability in uniformly loaded optical packet-switched networks of regular
topology with limited deflection routing. No previous work has studied limited deflection routing in networks
built of 4 × 4 nodes, which are more complicated than the extensively studied 2 × 2 nodes.
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Figure 6: Probability of packet loss in a network of n = 100 nodes as a function of network load u and
threshold S.

We found out that as the number of allowed deflections increases, the value of the packet loss probabilities
decreases at the cost of a higher upper bound on the packet delivery time. Moreover, the greater the network
load, the greater the packet loss probability. For a given permissible packet loss probability our analysis
provides the maximal network load and the number of allowed deflections.

The strength of our analysis is its novel mathematical appraoch, which is capable of providing very low
packet loss probabilities. Such low probabilities cannot be obtained with simulation. The analysis is verified
by simulation only when simulation gives results. Based on this we believe that our analytical results are
correct also for very low packet loss probabilities for which simulation provides no results. Our modeling
technique has strong links with discrete time Markov chains and we plan to explore these links in the future.

Although our technique has been proven useful in the context of a simple network topology (the torus of the
two-dimensional grid), in its present form it is inapplicable to the irregular topologies of real communication
networks. It promises prospects of accurate evaluation of optical packet-switched networks with realistic
characteristics, and therefore our ongoing work concentrates on extending this technique so that it can assist
in designing practical networks.
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