Interoperator fixed-mobile network sharing

Ireneusz Szcześniak, Piotr Chołda, Andrzej R. Pach
Department of Communications
AGH University of Science and Technology
Poland

Bożena Woźna-Szcześniak
Institute of Mathematics and Computer Science
Jan Długosz University
Poland

ONDM 2015

Grant number DEC-2013/08/S/ST7/00576 from the Polish National Science Centre
Introduction

- Fixed-mobile networks are wide-spread, and expensive.
- **Operators need to share**, but sharing is limited.
- Sharing of physical infrastructure: buildings, masts, etc.
- Roaming and virtual operators are about leasing, not sharing.
- Operators can build jointly a single network and use it together.
- Sharing can improve performance and **bring resiliency**.
- Performance improvement is so needed for 5G.
- Currently, fixed-mobile networks are not resilient.
Novel idea

The novel idea of interoperator fixed-mobile network sharing, and the evaluation of the benefits the sharing brings in terms of resiliency.

The hallmark of our proposed sharing is the interoperator communication in access networks.
Interoperator fixed-mobile network sharing in general
Interoperator sharing in passive optical networks
Disclaimer: we need active nodes

- In the proposed sharing we need active remote nodes.
- Active, not passive, nodes can diverge traffic to a backup path.
- But it’s hard to argue for active nodes in passive optical networks...
- So active nodes are also needed for:
 - longer reach,
 - better performance,
 - inter-ONU communication,
 - inter-base station communication,
Evaluation scenarios

• How does the proposed sharing improve the service availability?
• An ONU is capable of the interoperator communication or not.
• We studied two scenarios:
 • in the first, the locations of active remote nodes are given,
 • in the second, the active nodes are randomly distributed.
First scenario, and second too

Introduction
Contribution
Evaluation
Results
Conclusions

Slide 7
Service availability calculation

- Numerical evaluation: a mix of analysis and Monte Carlo simulation.
- We analytically evaluate a given, concrete network.
- We randomly produce a sample of concrete networks from the populations with the given probabilities:
 - r - an ONU is capable of inter-operator communication,
 - q - a remote node is active.
- We produced 87400 concrete networks, and averaged the results.
Calculations: traversing the reliability block diagram.
The availability is calculated using this recursive function:

\[
f(c, p) = \begin{cases}
 a_c a_{u \rightarrow c} f(u_c, c) & \text{1st case} \\
 0 & \text{2nd case} \\
 a_c & \text{3rd case} \\
 a_c \left(1 - \prod_{i \in N_c} \left(1 - a_{i \rightarrow c} f(i, c) \right) \right) & \text{4th case} \\
 h_c \left(1 - \prod_{v \in V_c} (1 - d_{c, v}) \right) & \text{5th case}
\end{cases}
\]
Service availability calculation - an interesting case
Results for the first scenario

![Graph showing availability vs. r for different scenarios](image-url)
Results for the second scenario

![3D graph showing availability vs q and r](slide 12)
Conclusions

• We proposed the interoperator fixed-mobile network sharing.
• We evaluated the benefits the sharing brings in terms of resiliency.
• Downtime can be significantly reduced with little network upgrades.
• Upgrades can be rolled out in stages and where needed most.
• The proposed sharing should improve performance too.
• There are many problems to solve, for instance:
 • performance studies,
 • optimization,
 • implementation details.